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1. Introduction 
 

In scenarios recorded by a static camera, the problem of automatically segment in relevant-

and-moving and irrelevant objects—as a two-class problem, it is also sometimes known as 

object segregation—has been recursively studied. Although Background Subtraction (BS) is not 

the only technique available for this task—alternatives include motion-compensation Error! 

Reference source not found. and image-scanning approaches [2], it has been, by far, the most 

used and referenced. 

 

There is a significant quantity of scientific studies that use BS as a primary tool to feed higher-

level tasks, including: object tracking, object/people recognition or scene understanding. This 

multi-task nature leads to two major implications: i) BS has been widely used in many 

computer-vision applications such as video surveillance, traffic monitoring and human 

computer interfaces and ii) BS has been exhaustively studied—with up to 160.000 enters in 

Google Scholar—. 

  

The principle of BS algorithms is to build a model of the empty scene (commonly named as 

background) and then detect—and segregate—objects of interest as elements (usually called 

foreground) that do not fit into the background model.  According to [3], a BS algorithm can be 

described by its solutions to the following key-tasks: 

 

Background initialization: defines the strategies to initialize the model with a true background 

image free of foreground objects thus determining an appropriate point of departure for the 

background modeling stage. 

Background modelling: describes the nature of the model and associated statistics used to store 

the empty scene—this task is also known as background representation—.  

Background maintenance: devoted to adapt the model to the changes occurred in the scene 

over time.  

Foreground detection: measure the difference between new samples and the model according 

to a set of features. 

 

This document compiles the contributions to BS developed in the Video Processing and 

Understanding Lab within the scope of the EventVideo project.  We start by briefly describing 

the remaining challenges in BS as well as the relevant state-of-the-art for each aforementioned 

key-task. Then, we organize our contributions in a per-stage basis and, finally, we arise a set of 

conclusions that result in the definition of the future work.  

1.1. Document structure 
 
This document is composed of the following chapters: 

 

Chapter 1: Introduction to this document. 

 

Chapter 2: State-of-the-art in background subtraction. 

 

Chapter 3: Proposed contributions 

 

Chapter 4: Conclusions and future work. 
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2. State-of-the-Art in background subtraction 
 

This chapter briefly summarized existing techniques for the task of BS. We propose to 

organize them in a per-stage basis remarking the challenges the aim to resolve. To this aim, we 

first review the common challenges that should be faced when designing a BS approach. 

2.1. Challenges 
 

According to the remaining challenges in BS, those identified by Toyama [4] are still 

the reference. Furthermore, in [3] three new camera-related challenges are included. We 

propose to organize them in three categories, according to the challenge’s source: camera, 

background and foreground—mixed-originated challenges, as camouflage, are here assigned to 

foreground—. These can be listed, slightly modifying the nomenclature in [3], as: 

 

Camera-related challenges 

 Noisy image: includes the acquisition-noise in the recording process, the interpolation-

noise of resized frames and the block-noise of decompressed videos. 

 Camera jitter: when static cameras are placed in non-stable supports—as highway’s 

cameras placed on bridges or poles—wind can make the camera vibrate, which results 

in nominal motion and—if unconsidered, misdetections—. 

 Camera automatic adjustments: automatic processes included in some cameras to adapt 

to scene changes—including refocus, automatic control gain, white balance and 

brightness control—completely change the background colors respect to those 

modelled. 

 

Background-related challenges 

 Illumination changes: these are divided in global, which is further subdivided in 

gradual—daylight in outdoors scenes—and abrupt—switch on and off of lights in 

indoors scenarios, and local—self-shadows and highlights.  

 Removed background objects: inanimate background objects can be taken—e.g. 

stolen— by animated foreground objects—e.g. a person—, leaving a wake—also 

known as a ghost—in the original position.   

 Inserted background objects: the opposite of removed background objects; inanimate 

objects may be placed in the background. Both situations are especially common in 

surveillance scenarios.   

 Dynamic backgrounds: especially in outdoor scenarios some parts of the background 

may be moving. This motion results in different values—multimodality—to those 

stored in the model. Common examples of dynamic backgrounds include moving water 

and waving trees.   

 

Foreground-related challenges 

 Bootstrapping: In crowded scenes part of the background can be occluded for a long 

time, then hindering the availability of enough samples to model its evolution or even 

its appearance.  

 Shadows: whereas background shadows—self-shadows—can be considered an 

illumination issue, foreground or moving shadows—commonly named cast-shadows—

represent a problem as they move as foreground while being represented by lower-

intense modes than those in the model. 
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 Beginning moving object: It is sometimes considered the equivalent to removed 

background object for foreground objects. The main difference relies in the object 

nature, here we usually refer to people, but other examples include cars or animals.  

 Sleeping foreground object: The parallelism continues with this human-driven version 

of inserted background objects. Even though the decision of incorporate these objects to 

the background—and then potentially leading to beginning moving object situations—

or not is task-dependent, people is usually expected to move again. If the foreground 

object is there since the initialization—and no management of this situation is 

performed—the challenge is also known as a hot-start.    

 Camouflage:  Probably—together with bootstrapping—the least studied challenge. 

Background and foreground objects may share equal—or even similar—appearances, 

then leading to an inaccurate discrimination process. Obviously this challenge is 

feature-dependent. 

 Foreground aperture: This challenge only applies for homogeneous foreground objects 

that were incorporated to the background. Partial movement of these objects is only 

detected at the boundaries whereas the interior remain equal to the stored appearance in 

the model. In our opinion, it is a special sequence of three challenges: sleeping 

foreground object, beginning moving object and camouflage. However, this also applies 

to the sequence: removed background object and camouflage. For both sequences the 

consequence is the detection of incomplete object regions. 

 

Despite the enormous amount of efforts and studies devoted to solve them, research community 

agrees [3][4][5][6] that it does not yet exist a system able to solve all of these challenges at the 

same time.  This is mainly due to a tug-of-war between generalist background-modelling and 

accurate foreground detection; i.e. enhancing approach’s flexibility to learn the different 

background appearances usually harms its ability to adequately discriminate the foreground.  

 

Furthermore, they cannot be solved at the same stage; those related to Illumination changes 

need to be addressed at the modelling and updating stages, and those associated with the 

foreground density, e.g. bootstrapping usually require also specific solutions in the initialization 

stage, whereas, in our opinion, camouflage should be addressed at the foreground detection 

stage—explicitly by exploring new features and metrics—which is rarely the main topic of BS 

solutions—which usually rely in color and luminance features—. 

2.2. Background initialization 
Background initialization (BI) is an important stage of the BS algorithms that has been 

weakly investigated in comparison with the remainder stages [3]. It consists in initializing the 

background model computing a background image free of foreground objects—True 

Background: TB—from a training sequence. Background initialization [3] [7-9] is usually also 

referred as Bootstrapping [3][10], Background estimation [11][12], Background generation 

[13][14] or Background reconstruction [15]. Several BS approaches in the State-of-the-art use 

an unreliable scheme to initialize the model, based on the assumption that the TB could be 

easily captured from the first frames of the sequence. This assumption is incorrect in many 

video-surveillance scenarios where there may be many foreground objects due to crowds and 

stationary objects. Therefore, capturing the TB in these situations is not an easy task and BI is a 

suitable way to tackle it. Furthermore, BI could be very useful to deal with high illumination 

changes due to the implicit capability to estimate a new background image and re-initialize the 

background model with it. 

First of all, some premises related with BI and the results expected by the algorithms must be 

defined: 
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a. Every background pixel should be visible in at least one frame to be considered as 

background, i.e. if a person is static along the training sequence it should be 

considered as background. 

b. Initial static regions that leave their spatial location during the training sequence 

should not be considered as background. 

c. Moving regions that become stationary during the training sequence should not be 

considered as background. 

 

Attending to the main issues found in the literature, some key challenges could be described, 

dividing them in two categories: 

 

Background visibility: when a background pixel or region is seen in few frames during the 

training sequence there are some situations derived: 

a) Low background visibility due to motion: Crowded environments involve many 

background occlusions, however if the background is occluded by moving objects 

the main representation of the background in that location is not going to be a 

foreground object. 

b) Stationary objects: This issue involves either removed background and inserted 

background challenges. The target is to detect TB in spatial locations where there 

are static objects during the training sequence but the TB is visible sometimes. The 

stationary object could be in the same spatial location during most of the sequence. 

 

Photometric factors: 

a) Shadows and highlights: As mentioned above, shadows and highlights involve 

illumination changes in the scene. In the case of cast shadows, they do not represent 

the TB whereas there could be some shadows or highlights inherent to the TB. 

b) Camouflages: This problem makes harder to distinguish between TB and 

camouflaged foreground. 

 

There are different approaches in the state-of-the-art for BI based on pixel-level or block-level 

analysis, however we perform a classification of the most recent and relevant approaches 

attending to the time strategy followed to build the true background from the training sequence 

and the capability of operation provided: 

 

On-line: 

This category groups approaches which build the background relying on the temporal 

evolution of the frames [10][13][14][15] and are able to build a background image in each 

temporal instant. This category also includes background modeling approaches [3] 

operating in an on-line way. For this group conditions ‘b’ and ‘c’ are challenging. 

Batch: 

This category groups algorithms that analyze the whole training sequence requiring to be 

executed completely at each temporal instant to deliver a background image. The basic 

approach in this category is the median, however there are more recent and accurate 

algorithms as [7], [16] and proposed. Furthermore it exist an approach based on graph cuts 

and image inpainting [14]. In this category background subspace learning models are also 

included Error! Reference source not found.. 

Hybrid: 
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This category groups approaches [8][11] which, as Batch, build the background analyzing 

the whole training sequence, however they are able to provide a background image at each 

temporal instant due to an on-line clustering instead of the batch clustering made by some 

algorithms included in the Batch category. 

 

2.3. Background modelling 
 

The background modelling stage has classically been the main criteria to organize BS 

approaches. In fact, for years, BS approaches were divided in parametric—evolutions of the 

well-known Mixture-of-Gaussians MoG [18]—and non-parametric—a successful alternative 

[19] [20] started by the top-referenced Kernel-Density-Estimation KDE [21], with cluster or 

codebook models [22][23] and Principal Component Analysis (PCA)-based subspace-learning 

[25] models being the rare alternative. However, recently we can identify new trends, including 

modelling based on self-organized neural networks [26], uncertainty-based fuzzy models [27] 

and evolutions of sub-space methods [17]. Basically, all these methods aim to provide 

robustness to dynamic backgrounds. 

2.4. Background maintenance 
 

Usually closely linked with the background modelling stage, maintenance mechanisms 

are fully included in the model definition. However, we can distinguish two main strategies for 

model maintenance: blind and selective. Blind maintenance equally considered every incoming 

sample—both background and foreground samples—for updating the model whereas selective 

maintenance uses different strategies for background—usually some sort of running average 

scheme—and foreground—most of the times no updating at all—samples. 

 

Evolutions of these strategies include multiclass selective updating [28] and confidence-driven 

updating [29]. Multiclass updating enhances the segregation process (foreground-background) 

by introducing gradual classifications (e.g. foreground-shadows-background) and designing ad-

hoc maintenance strategies for each class. On the other hand, confidence-driven updating 

combines the likelihood between new background and model samples with model history to 

adapt the learning rate. 

 

Robust maintenance mechanisms used in flexible models aim to overcome camera—noisy 

image, camera automatic adjustments—and background—illumination changes—related 

challenges. Furthermore, is in this stage where the maintenance mechanism that defines whether 

inserted objects are incorporated to the model—inserted background objects,  sleeping 

foreground object—and whether ghosts are updated—removed background objects,  beginning 

moving object—.   

 

2.5. Foreground detection 
 

Foreground is detected as unobserved—or not modeled—samples.  However, whereas 

this is sometimes understood as a simple classification task [3], in our opinion is determinant for 

obtaining accurate results whereas it is mainly driven by the features used for characterization.   

 

Several features [30] have been proposed in the literature: color and luminance—spectral—

which operate well in most scenarios but suffer from camouflage, shadows, foreground 

aperture and illumination changes, edge and texture—spatial—which can be used to remove 
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ghosts (edges) or are assumed to operate better where color fail (texture) and disparity and 

depth—stereo—which are the best for handling camouflage but require the use of at least two 

cameras.  

 

These features can be used to compute second-order features as motion—which inherits the 

advantages and disadvantages of the feature(s) used to obtain it—or combined by different 

schemes [31] [32]. 
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3. Contributions 
This chapter compiles the contributions developed in the VPU in the scope of this project. 

Although some of them—those in sections 3.2, 3.3 and Error! Reference source not found.—

are integrated in a single system, we respect the per-stage organization. 

3.1. Background initialization 
 
We are currently developing a BI algorithm that will be published in the next months, however 

we include the current state of the approach as it is part of the project. The algorithm is currently 

providing similar results as the best state-of-the-art approaches. 

 

Once we analyzed the state-of-the-art, we decided to build a block-based BI algorithm due to 

the higher amount of information that a block-level approach can provide, in comparison with a 

pixel-level, for the spatial continuity stage that was going to have our algorithm. 

The proposed algorithm is divided in three stages: Temporal clustering, seed selection and 

spatial continuity analysis. Subsequently, stages are roughly explained: 

 

Temporal clustering: First of all, each image under analysis is divided with a grid of N×N 

(N=16, as [11]) blocks (see Figure 1). 

 

Figure 1. Block division performed. 

 

The purpose of this stage is to reduce the amount of information (i.e. blocks in each spatial 

location) to analyze in the spatial continuity stage (see Figure 2). To this end, first a motion 

filtered is performed and subsequently an agglomerative clustering approach is applied together 

with a dimensionality reduction via Principal Component Analysis (PCA). 
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Figure 2. Clustering stage target. For example, in the location k similar blocks are grouped 

as a unique candidate (Ui – Mean of Bj candidates), reducing the options available from t to 

3. 

 

Motion filter consists in removing those blocks of the training sequence belonging to moving 

objects due to their uselessness to reconstruct the TB. To extract motion information a classical 

pixel-level frame-difference (FD) is performed, with the slight variation from FD with distance 

1 of computing differences among q-separated frames. The reason is to extract higher motion 

than 1-separated FD thus filtering more undesirable blocks. A block is considered to be moving 

if any of the pixels included suffer motion. 

Once motion information is computed, a clustering technique is applied. The target is to group 

in each spatial location (block-level) the different candidates along time to form the TB, thus 

grouping similar candidates in one cluster and reducing the future computations (i.e. if the 

training sequence has t frames, there are t representations in each spatial location and with the 

clustering stage that number is decreased). 

To increase the computational efficiency without losing accuracy the dimensionality of the data 

(blocks) is reduced applying PCA before the clustering is performed. PCA is applied to the 

t×(16*16*3) data matrix formed by t rows representing the block in each frame and 768 

columns representing the rasterized block with each color channel (RGB) concatenated. The 

base to apply PCA is its property to take into account the dimensions which experiment a higher 

variance under the assumption that variance and information goes together, fact that in this 

problem is true because dimensions (pixels) that experience variation are the ones needed to 

perform the clustering. 

Once the dimensions are reduced, the clustering is performed through an agglomerative 

hierarchical approach where a dendrogram is build based on the minimum Euclidean distance 

among clusters. Then the dendrogram is cut at different levels doing a scanning of different 

cluster hypotheses. These hypotheses are validated via clustering validation measures that check 

compactness and separation among clusters (Silhouette index and Davies-Bouldin index). The 

cut with best score is selected as the optimum clustering for that spatial location. 

 

Seed selection: The purpose of this stage is to decide the starting point to begin the 

reconstruction, namely fix at least one block of the TB (see Figure 3). In this stage we develop a 

novel strategy to perform this task including motion information. Two admissible assumptions 

are taken into account: 

a) The background is not completely occluded neither in the first frame nor in the last 

frame. 
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b) Static objects are not going to occupy the same spatial location at the beginning and 

at the end of the training sequence, excluding the case in which the object is 

stopped during the whole sequence, i.e. the case in which the object is part of the 

TB. 

 

  

Figure 2. Example of seed selection. Blocks already selected are going to be used as point 

of departure for the final reconstruction of the spatial continuity stage.  

 

The approach computes the FD between the first frame of the training sequence and the rest of 

the frames, thus obtaining motion information in comparison with the first instant. Once this 

information is computed, a confidence measure of each pixel belonging to the TB is computed 

averaging the motion score at each temporal instant. The same procedure is applied between the 

last frame and the rest. Subsequently both confidence measures are combined via mean 

operation. As we are operating at block-level we give a block confidence score taking into 

account the minimum pixel confidence score included in each block location. Then, the measure 

is normalized with the maximum block level confidence, thus obtaining the final measure to 

select the TB seeds. A seed is going to be fixed with the cluster grouping more blocks in those 

locations where the confidence is maxim. This technique for initializing the TB has been 

compared with approaches for the same task in the state-of-the-art reaching a higher TB initial 

reconstruction without errors. With this measure we obtain low confidence in those areas with 

high motion and stationary objects (no matter the instant where the stationary object is due to 

assumption b)). 

 

Spatial continuity analysis: The purpose of this stage is to build the complete TB 

measuring continuities between fixed background blocks and their neighbor candidates. This 

stage is the only one that is not finished yet. Subsequently, we explained the current operation. 

The reconstruction is performed with an iterative scheme, identifying in each step the best 

location to reconstruct (the one with more information). The reconstruction scheme consist on 

fixing in each iteration the 4 neighbors (up, left, down, right) of the selected seed, i.e. the one 

with more fixed blocks in the 3×3 neighborhood (external neighborhood blocks already fixed 

are taken into account in case of draw). To decide the best block in the neighbors each cluster 

candidate is check it measuring the edge continuity with all available neighbors via color 

differences. The best candidate is the one with lower difference. This reconstruction is made 8 

times via multi-path reconstruction scheme. The different reconstructions are performed 

beginning in each 4 neighbors and moving along the two possible paths in the 3×3 
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neighborhood that begin and finish in the same point. Then, having 8 possible reconstructions 

the neighbors are selected among them as the ones with best spatial continuity. This procedure 

is repeated until the TB is obtained. 

 

3.2. Background modelling 
 

In the scope of the project, we have designed a Background Model at pixel level that 

follows a multi-layer philosophy under a non-parametric modelling strategy.  To this aim, we 

have integrated several solutions from the state-of-the-art in a modular framework that ease 

module replacement while respecting the general idea of the design. The system is a real-time 

general-purpose solution. However, it was explicitly designed to operate in outdoors 

environments and then specific mechanisms to account for dynamic backgrounds are proposed. 

 

In particular, the model is composed of L+1 layers, with L—the number of layers modelling the 

background—being a configurable parameter that grows with the background dynamics. 

Furthermore, an extra layer is included to account for foreground statistics. Each model stores 

through tensor-representation three statistics per pixel: an RGB-color representation of the pixel 

mode or appearance, a confidence value that measures the reliability of the stored 

representation, and a permissiveness scalar that adapts to the mode variability. From this point 

we explain the mechanisms associated to one of the layers, being the operation in the others 

equivalent. Section 3.4 describes the processes for layer initialization and inter-layer 

replacements.  

 

Appearance: defined as subspace in the RGB-color Cartesian space 
3  in order to account for 

local illumination changes as shadows and highlights. This subspace is designed to account for 

medium-intense local illumination changes under the assumption that an appearance affected by 

these changes would be similar to a scaled version of the non-affected appearance. This in 

general not true for strong illumination changes as the green (G) channel contains much more 

illumination information than the blue (B) channel. However, shadowing and reflects are not 

usually very intense in video sequences and there are several schemes in the literature that 

achieve excellent results by following this premise [33][34][35].  

 

In particular, we designed a similar approach to the one proposed in [35], where a model’s pixel 

 ,x x y  at instant t  is described through its RGB-mode ( ; )x t . The mode defines a color 

vector in 
3  starting at the space origin (0,0,0)  and ending at the point coordinate: 

 ( ; ) ( ; ), ( ; ), ( ; )R G Bx t x t x t x t    .  

 

The magnitude of such vector is strongly related with the pixel’s luminance and its expected 

that a shadowed version of the model-pixel would be represented by a similar directional 

vector—described by polar coordinates azimuth and elevation—but with smaller magnitude.  

Similarly, a highlighted version would be close in direction while presenting a higher 

magnitude. In order to account for the non-linear resolution of the RGB-color space—as it is 

designed in consonance with the human visual system, darker colors are assigned a smaller 

representation space—in [] it is proposed to place a cone aligned with the color vector with the 

vertex in the origin. Differently than their solution, we here defined the cone base radius ( ; )r x t  

as a function of the model pixel permissiveness ( ; )K x t  as described in chapter 3.3. Finally the 

allowed strength of shadows ( ) and highlights ( ) defines a cone-truncated-shaped subspace. 

Only appearances of samples ( ; )I x t  falling inside the subspace would be considered new 

samples of the model-pixel, i.e. a correspondence is found. Additionally, for all the new 
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samples—with independence of its belonging to the subspace—the L2-norm to the stored 

model: ( ; )d x t  is computed.  For further details see Figure 1 and read [35]. 

 

 

Figure 1. Cone-truncated subspace that defines a model-pixel appearance 

Confidence: classical BS solutions do not include a statistic to measure the goodness of the 

model-pixel. A repetitive and stable mode can result in over-fitted distributions whereas a highly 

dynamic pixel can derive to a representation composed of several not-remarkable modes. A 

measure of the confidence of each model-pixel provide indications to drive the updating and 

foreground detection stages [28][29] whereas can be used as a tool to avoid over-fitting. In our 

solution the confidence of each model-pixel ( ; )C x t  is computed as a function of the number of 

pixel samples with the same appearance—falling in the cone-truncated subspace—, the distance 

of these samples to the stored mode and the permissiveness. The process is further explained in 

chapter 3.3. 

Permissiveness: almost every BS approach defines strategies to control the permissiveness for 

obtaining correspondences, e.g. in MoG solutions the standard deviations of the Gaussians 

modelling each mode and in KDE approaches the width of the kernel used to estimate the 

distribution. As aforementioned, in our system the permissiveness parameter drives the 

comparison and confidence updating processes. Furthermore, we propose a mechanism to also 

update this parameter under an expectation premise (see chapter 3.3).   

3.3. Background maintenance 
 

In the maintenance mechanisms designed, the permissiveness plays a key-role. The 

whole updating process is illustrated in Figure 2. The permissiveness is first used to define the 

cone-truncated subspace radius—i—. New samples are compared—ii—, according to such 

radius, with model samples, then obtaining or not a correspondence but always a distance. Such 

distance is combined with the permissiveness to compute the confidence updating factor—iii—. 

The so-computed updating factor and the update confidence are used to decide whether or not 
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replace—R—the model mode with the new sample—iv—. Finally the distance is used to update 

the permissiveness—v—. 

 

The whole process is proposed as the solution to an expectation problem: according to the 

observed distances, how big need to be the permissiveness to increase the mode confidence an 

expected quantity e ?  

 

 

Figure 2. Sequence of updating process  

 
Confidence updating from permissiveness and distance: We propose to use an exponential 

function on the distance to define the confidence learning rate. The cut-off of this function is 

function of the permissiveness. Explicitly, the updating factor ( ; )x t  is obtained through: 

 
( ; )( ; )

max

( ; )
( ; )  ,       ( ; ) 1

K x td x t d x t
x t e d x t

d
      

, where maxd  is the maximum reachable distance with the selected comparison scheme and 

1e    is a normalization constant. Figure 3 illustrated the exponential function for several 

permissiveness values. Note that the bigger is ( ; )K x t  the more restrictive is the system, i.e. the 

lower the distances are needed to positively update the confidence. 

 

 

Figure 3. Sequence of updating process  
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Radius from permissiveness: The radius is obtained by solving the updating factor equation 

such that distances equal to the radius result in confidence increments ( ; ) ex t  : 

 ( ; )

max( ; ) ln( ) 1
K x t

er x t d      

 

Updating the permissiveness: We aim to smoothly update the permissiveness according to the 

distances among samples in the subspace. To this aim, we follow a classical running-average 

scheme: 

ln(ln( ))
( ; ) ( ; ) (1 ) '( ; ),         '( ; )

ln( ( ; ))

eK x t K x t K x t K x t
d x t


 

 
     

 

, where '( ; )K x t  is obtained by relating the obtained distance with the expected updating. 

Through this process the permissiveness controls the learning rate. Big distances would made 

the model more permissive—increasing ( ; )K x t  and then ( ; )r x t  whereas distances smaller 

than the radius—then resulting in bigger than e  updating factors—would slowly narrow the 

subspace. 

 

Confidence-driven mode replacing: Both evolved confidence and immediate updating factor 

are used as decision-makers to update the mode. Modes under-construction i.e. with associated 

low confidence are replaced with matching modes. Additionally, small—even positive—

updating factors may also involve replacement. In particular, modes are replaced if: 

min

( ; )

( ; )

C x t
C

x t


 
 

 

, where \ e    threshold the updating factor and minC  the confidence. 

 

Initialization of new layers: Samples resulting in updating factors smaller than e  are used to 

initialize new layers in the model. 

3.4. Foreground detection 
 
In this section we first described and present results for a multiclass scheme that uses the model 

statistics described in section 3.2 and the updating process described in section 3.3. Then we 

further explore alternative features explicitly devoted to solve camouflage by presenting and on-

going idea. 

3.4.1. Class-driven foreground detection 

We propose to classify a pixel according to its feasibility of being part of the temporal 

evolution of the model. First, we aim to distinguish between pixels belonging to moving 

objects—dynamic—and pixels which representation appears invariant—static—. Then, pixels 

in each class are further classify in pixels to which there are previous evidences in the 

background model—background—and pixels which previous evidences are in the foreground 

model or have not been yet observed—foreground—. Following these premises four classes are 

defined: static background, dynamic background, static foreground and dynamic foreground.  

 Static / dynamic: we simply establish a threshold over each mode confidence, such 

threshold is a configurable parameter, but must be proportional to—and bigger than—
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the minimum confidence that inhibits mode replacement: min , 1staticC C   . Only 

new samples corresponding with a layer in the model—inside the cone-truncated 

subspace—are evaluated to be static. The rest of the samples are tagged as dynamic. 

 Static background / static foreground: to perform this classification we made use of the 

foreground model. Only if the correspondence was obtained with the layer devoted to 

model the foreground the sample is classified as static foreground. In the eventuality of 

multi-layer correspondence, the layer with the lowest distance assigned prevails. 

 Dynamic background / dynamic foreground: there is no temporal information—

history— available for dynamic samples. Alternative processes are then required. We 

propose to use a regional comparison process which quantifies the difference between a 

dynamic region and its corresponding pixels in the best background model. Three 

processes are required; first, dynamic pixels are grouped in regions by a connected-

component analysis. The best background model result from the selection of the modes 

along the model that maximize per-pixel confidence, this process result in an image 

where the most confidence modes are combined. Finally, for each connected component 

we study the cross-correlation between the normalized histograms of the RGB-modes of 

the pixels inside the component and that built by selecting in the best background model 

those modes that fall inside the connected component.  

 Dynamic foreground—the whole connected component is classified—is detected at low 

values of the cross-correlation and used to initialize new areas in the foreground model. 

Dynamic background is used to initialize new areas in the background model. 

 

Updating inhibition: classification process is performed immediately after the computation of 

the updating factor and is used to inhibit the updating of models with samples assigned to a 

different class, i.e. the statistics of a mode in the background model are not updated if a 

correspondence with a dynamic foreground pixel is obtained—such a situation can be possible 

due to the analysis of connected components—. This inhibition scheme reduces the likelihood 

of model’s perturbation. 

 

Management of static objects: the use of two models—one for the background and one for the 

foreground—along with the information provided by the confidence can be used to identify—

and correct if desired— the challenges associated with removal or insertion of objects (see 

section 2.1). 

 

System performance: Proposed system—described in sections 3.2, 3.3 and Error! Reference 

source not found.—is evaluated with all the videos in the Change Detection dataset—2012 

version—1. Videos in the dataset are varied in size, nature, scenario and complexity and 

organized in six categories: baseline, camera jitter, dynamic background, intermittent object 

motion, shadows and thermal. A comparison in terms of per-category and overall precision, 

recall and f-score is carried out.  Results are compiled in Figure 4, Figure 5 and Figure 6.  

For the proposed system two configurations are designed. In the first configuration the cone-

truncated subspace is disabled and replaced by a sphere of radius ( ; )r x t , and a maximum 

number of 3L  layers were available.  In the second configuration the cone-truncated is 

activated and the number of layers was increased 5L  . Additionally, we included a 

neighborhood-wise module in the comparison, such that the distance is obtained—and then 

correspondence is searched—as the minimum when compared with a 3x3 neighborhood around 

the corresponding model-pixel.   

                                                 
1
 http://www.changedetection.net/ 
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Figure 4. Recall (RC), precision (PRC) and f-score (FSC) results for three categories of the 

Change detection dataset. For comparison, results of leading approaches in the state-of-the-art 

[26][?][36][37][38]—from left to right—are also included. 

 
Figure 5. Recall (RC), precision (PRC) and f-score (FSC) results for the other three categories 

of the Change detection dataset. For comparison, results of leading approaches in the state-of-

the-art [26][?][36][37][38]—from left to right—are also included. 
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Figure 6. Average recall (RC), precision (PRC) and f-score (FSC) results for the Change 

detection dataset. For comparison, results of leading approaches in the state-of-the-art 

[26][?][36][37][38]—from left to right—are also included. 

 

 
 

Figure 7. Examples of qualitative performance of the proposed system 

 

 

Results discussion: Obtained results show that our system’s performance is still far from that of 

the best approaches available in the state-of-the-art. Carefully analyzing the results, the main 

problem was identified as the management of camouflage—see qualitative results in Figure 7—. 
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Next section describes an on-going work that aims to face this challenge at the feature 

description and comparison stages. 

 

3.4.2. A DCT-based robust to camouflage metric for foreground 
detection 

 

Problem description: Foreground-background camouflage in BS techniques is a critical 

problem, which has been usually underestimated or miss-solved via post-processing techniques. 

Recent approaches tackle it by modelling pixels neighborhood instead of isolated pixels, which, 

more generally, aims to enhance foreground-background discrimination. These approaches, 

while more robust to foreground-background similarity, may affect the accuracy of the 

background model. 

 

Proposed solution: We design a new feature to model pixel local variability, which enhances 

background-foreground discrimination. It is derived from the Discrete Cosine Transform (DCT) 

and was explicitly motivated to handle camouflage and local illumination changes.  

 

As generally known, the DCT coefficients, ( , )c u v of a WxW -pixels square block centered 

at a pixel 0 0 0( , )x x y  of a scalar image ( , )I x y , are computed as: 

 

0 0

0 0

1 1
2 2

2 2

(2 1) (2 1)
( , ) ( ) ( ) ( , )

2 2

W W
x y

W W
x x y y

x u y v
c u v u v I x y cos cos

W W

 
 

   

   

    
    

   
   

 

, where 
1 2

(0) , ( , 0)u v
W W

      and 0 ,u v W  . 

 

The DCT has several properties that make it a suitable tool for estimating the color distribution 

of a pixel block neighborhood.  

 Each DCT coefficient conveys a measure of the similarity between the ( , )I x y  values 

distribution inside the block centered at 0 0 0( , )x x y and a directional response determined 

by the 2D basis functions or images. The whole block distribution can be seen as a weighted 

combination of these directional responses. 

 It leads to a set of low-correlated coefficients which are suitable to be modeled 

independently. 

 Illumination changes that have effect on the whole block and are not so strong to occlude 

variability inside the block, mainly affect the DC coefficient, (0,0)c . Then, a technique not 

considering this coefficient would be less sensitive to these changes.  

 The transform is separable, symmetric and orthogonal. It is separable as each coefficient 

( , )c u v can be computed in two steps by successive one dimensional operations on rows and 

columns of a block. Symmetry means that row and column operations are functionally 
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identical. Finally, as the inverse DCT transformation matrix is equal to its transpose, the 

DCT is othogonal. These properties allow a fast and efficient computation of the DCT. 

From now on we will just focus on the AC coefficients, which are those describing local 

variability. Despite all the indicated properties, up to our knowledge, there are no BS works 

describing local variability with a block based DCT. In our opinion, this might be due to the 

problematic involved in computing differences between the DCTs of two image blocks. If either 

all the AC coefficients or a fixed subset are considered as a single feature vector, intensity to 

intensity comparison between vectors would be adequate, as each vector component represents 

the same coefficient. However, firstly, considering all the coefficients is both inefficient and 

noisy as most of the information is compacted in a few coefficients. This would result in a 

system very sensitive to foreground presence, but also to slight background changes; that is, a 

system with high recall in foreground detection, but poor results in foreground precision. 

Secondly, selecting only a fixed subset of AC coefficients would fail for blocks mainly 

characterized by the non-selected ones.  

 

In practical situations, most of the information in an image block is represented by a few AC 

coefficients. In order to evaluate the dissimilarity between two blocks, it would be natural to 

compute differences just among the representative ACs, which are not generally the same for all 

blocks. Each AC coefficient, ( , )c u v  represents a response to a pattern or basis image function, 

,u vB —depicted in Figure 8  a) for 8W  —. Hence, independently of the AC coefficient value, 

dissimilarity evaluation first requires a measure of the similarity between every pair of patterns.  

 

We here propose a simple estimation of such subjective similarity, attending to spatial 

variability rhythm and direction, and weighting them in a well-balanced fashion. Considering 

the classical 2D representation of the DCT basis functions—see Figure 8 a) —, we obtain a 

measure of the distance between two of these functions following: 

 

1 1 2 2

1 2
, , 1 1 2 1 2 2

1 2

[ , ] ( ) ( )u v u v

u u
M B B k u u v v k atan atan

v v

 
         

 
∣ ∣ ∣ ∣ ∣ ∣  

 

, where a b  means the maximum of a  and b , while ( )atan a  stands for the arc tangent of 

a . The non-negative weight factors 1k  and 2k  are set to equally weight both terms of the 

equation, which intends to formalize that patterns with maximum difference in variability 

orientation—i.e., orthogonal orientation—are considered as different as those with equal 

orientation but maximum difference in variability rhythm. Observing that the first term takes 

values in the range [0 : 1]W  , and the second one varies in [0 : / 2] , we can set 1 1k  and 

2 ( 1) / 2k W   . Other combinations of 1k  and 2k  keeping balance between the two parts of 

the equation would be also valid. The proposed measure fulfills the properties of non-negativity, 

positive definition, symmetry and sub-additivity—proof of these properties is leaving out of this 

document for legibility—.  
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Figure 8. a) Representation of the DCT basis functions for 8W  , b) Metric evaluation 

between every single AC basis function and all the other ones, c) 2D Euclidean distance 

between every single AC basis function and all the other ones, d) 1D Euclidean distance 

between every single zigzag ordered AC basis function and all the other ones. 

 

The proposed metric can be visually inspected in Figure 8  b). The metric evaluated for every 

pair of AC basis functions is plotted block-wise, that is, it is organized in a WxW -blocks gray-

level image. Each block's pixel presents the distance (the higher the brighter) between the co-

located basis function displayed in Figure 8 a) and all the other 1WxW   functions —including 

self-similarity and excluding similarity with the DC basis function, which is set to zero or 

black—. The block corresponding to the DC coefficient is set to zero as it is unused. For 

visualization purposes we have set 8W  and scaled the resulting images. Observe, for 

instance, that 0,1B  results as different from 1,0B —just due to variability direction—as from 

0,7B —just due to variability rhythm—.  

 

An intuitive but in this case senseless alternative is to use the Euclidean distance between the 

basis-functions positions, i.e. ( , )u v , in a 2D vector space; this is illustrated in Figure 8 c). 

Observe that in this case 0,1B  results relatively similar to 1,0B , while representing orthogonal 

patterns. Finally, we also include in Figure 8 d) the 1D Euclidean distance between every single 

AC basis function and all the other ones, ordered following the classical zigzag technique; 

again, orthogonal patterns are very close in the distance space—observe the similarity 

between 0,1B and 1,0B which are separated by the minimum distance step—.  

To model each pixel, we simply store the N  highest energy—in absolute value—AC 

coefficients per pixel, weight their relevance according to their relative contribution—in energy 

percentage—and then compare new samples through the described metric. We named this 

description WRAC (i.e., based on intensity Weighted Ranked AC patterns):  
 

Separating foreground and background: In order to evaluate the discriminative power of the 

proposed characterization and metric, four other features have been selected for comparison. 

Two of them aim to compare the proposed metric against two alternative ways of considering 

DCT coefficients. One, which we will refer as AC1, replicates the proposed characterization but 

using the 2D Euclidean distance to measure the similarity between two DCT basis-functions:  

 

1 1 2 2

2 2

, , 1 2 1 2[ , ] ( ) ( )u v u vM B B u u v v      

 

The other, which we will refer as AC2, replicates AC1 but using the first N coefficients of the 

DCT (following the classical zigzag order), instead of the N  higher energy ones.  The third 

selected feature is the original uniform LBP [39], designed, as the proposed feature, to measure 
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local variability. The circular radio around the pixel region that defines how many neighbors are 

used to build the LBP descriptor has been set to 2W  in order to perform a faithful comparison 

in terms of quantity of neighbors accounted. Finally, the fourth feature is the pixel luminance Y, 

which has been, for years, one the most popular way of considering the pixel value. 

 

For the experiment we have selected four videos from the data set described in [40], as ground 

truth segmentation is available for every frame and contain several of the complex situations 

that affect backgrounds in real scenarios, which supports the robustness of the obtained results. 

These raw videos, described in Figure 9, are 600 to 1200 frames long each, with 720x576 

resolution. Apart from an example frame (a), we also include an average mask of foreground 

occurrence in the video (b), the average squared luminance difference between foreground and 

background for each pixel (uniform red areas correspond to frame areas not affected by the 

foreground) (c) and a frame showing the background pixels prone-to-camouflage (d). These 

refer to background pixels whose difference to the foreground is zero in at least one video 

frame, although larger differences might also cause camouflage. For the third experiment we 

use some more popular videos, but with ground truth segmentation just on some selected 

frames. 

 

 
 

Figure 9. Videos extracted from [40]. a) Example frame, b) Foreground evolution, c) Average 

difference between foreground and background (red areas are never foreground), d) Prone to 

camouflage pixels (in black). 

 

We use the ground-truth segmented videos to obtain, for background pixel instances and for 

foreground ones, for every pixel position and for all the data set frames, the histograms or 

distributions of the values of the five features. Then the overlap for each feature between both 

distributions is evaluated using the well-known Bhattacharyya distance.   

 

The comparison is performed in terms of wins (w), losses (l) and ties (t): given two 

Bhattacharyya distances, 1B  and 2B , resulting from computing the overlap between foreground 
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and background distributions for features 1M  and 2M  respectively, 1M  beats (wins) 2M  if 1B  

is higher than 2B , 1M  ties with 2M  if 1B  equals 2B , and losses if 1B  is lower than 2B . A 

Kolmogorov-Smirnov test with a 5% significance level is previously performed over each pair 

of background-foreground distributions in order to avoid comparison of identical distributions, a 

situation which finally did not occur in the selected data set. Comparisons between every pair of 

considered features, as well as overall winning and mean and standard deviations of pixel-

average Bhattacharyya distances are included in Table 1. 

 

Table 1. Overall results for Foreground-Background separability of raw data for 

proposed feature (WRAC), Ranked Euclidean (AC1), ZigZag Euclidean (AC2), LBP and 

Luminance (Y) in terms of Bhattacharyya distance. 
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4. Conclusions and Future Work 

 
Background subtraction is a complex task, in this document we have analyzed the challenges 

and propose several solutions to face them. The main objective is still shared with the state-of-

the-art: design an approach able to face all the challenges at the same time. In this vein, there is 

a trade-off problem between efficiency and challenge covering, i.e. there are efficient solutions 

that succeed in the management of a subset of the challenges, and almost every challenge has 

been target of excellent research. However, the integration of all those solutions at the same 

time may result in time- consuming analysis which inhibit the use of the system at real-time-

demanding scenarios. 

 

We have propose a flexible BS approach and realize that whereas its operation is functional for 

most of the applications, its statistics suffer from camouflage problems. With this in mind, we 

have inspected new information representation schemes, achieving promising—but not 

concluding—results. 

 

Future work is mainly focused in the exhaustive evaluation of ongoing approaches—

initialization and camouflage—and in its integration in the proposed analysis framework. 
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